2022年10月14日金曜日

重複組合せ(3) X+Y+Z=N問題と最短経路の数

以下はここをクリックした先の問題の解答です。

【問3】

方程式x+y+z=7の負でない整数解は何個あるか。

【第1の解】

この問題の方程式の解を順次に書くと、
(x,y,z)=
(0,0,7)
(0,1,6)
(0,2,5)
・・・
と順次に書けます。
xが0~何個かであり、
yが0~何個かであり、
zが0~何個かである
組合せの数を求める問題です。

 このようにしてあらわした、その解の組み合せと1対1に対応する以下の経路を考える。
方程式x+y+z=7の負でない整数解の数は、その経路の数に等しい。


上図のようにx行とy行とz行との3行を有し、横の長さが7の格子を考える。
格子のA点からB点まで、xの行からzの行まで格子を辿って、右と上に進む最短経路を描く。

上図で、
x=(x行の、A点から昇り階段までの長さ)
y=(y行の、階段と階段の間の長さ)
z=(z行の、階段からB点までの長さ)
とすると、
方程式x+y+z=7がいつでも満たされる。

A点からB点まで、格子をたどって右と上に進む1つの最短経路は、
方程式x+y+z=7を満たす(x,y,z)の1つの組合せに
1対1で対応する。
つまり、
(1)どの(x,y,z)の1つの組合せに対しても、必ず1つだけ、AからBへの最短経路がある。
(2)AからBへのどの最短経路に対しても、必ず1つだけ、(x,y,z)の組合せがある。
という関係(1対1対応する関係)がある。

そのため、A点からB点までの全ての経路の数は、(x,y,z)の組合せの数と等しい。

上図の経路は、
→→↑→→→↑→→
とあらわせる。
すなわち、経路は、(↑)2つと(→)7つの配列であらわされる。
-------(注意)-------
ここで、「配列」という用語の定義を、同じ(↑)2つの順や同じ(→)7つの順を区別しないで配列の数を数える事を「配列の数を数える」と定義する。
「順列」という用語の定義を、1つ1つの(↑)や(→)に名前を付けた9つの要素の順の配列の数を数える事を「順列の数を数える」と定義する。その順列の数=9!である。
-----(注意のおわり)--------------

(A点からB点までの経路は、(↑)2つと(→)7つの配列と1対1対応する)

そのため、図のA点からB点までの全ての経路の数は:
(3): (↑)2つと、(→)7つが作る全ての色配列の数と等しい。ただし、その色配列は、その配列において、個々の(↑)2つの配列の順を区別せず、個々の(→)7つの配列の順を区別しない。
(4): その色配列の数は、合計(2+7)個の矢印から2つを選んで上向き矢印にし、それ以外の矢印は横向き矢印にする組み合わせの数と等しい。

よって、その組み合わせの数は、
(2+7)!/(2!×7!)
(2+7)
になる。
(第1の解おわり)

【第2の解(概要のみ)】
 経路を考えずに、
(↑)2つと(→)7つの配列が、方程式x+y+z=7を満たす(x,y,z)の組合せに1対1で対応することに注目することで答えを計算することもできる。
(↑)と(↑)の間の(→)の数が、x、y、zに対応するからである。

ここで、
→→↑→→→↑→→
のように、最後にはもう(↑)が無い配列が作られる一方、
例えば、
→→→↑→→→→↑
のように、
最後に並べた(→)の後に、(↑)を加えた配列も作られる。

最後に(↑)を加えた配列は、最後にあたるZの数が0であることをあらわす

リンク:高校数学の目次
場合の数と確率

0 件のコメント:

コメントを投稿