2016年12月1日木曜日

3辺が定まった三角形の頂点の足の位置の証明

これは、ここをクリックした先のページの問題の解答です。

【問1】
上図の三角形ABCの頂点Aの足Dの左右へのずれを計算する上の式が成り立つことを証明せよ。

【解答】
右辺の分子の式を以下の式のように変形する。
(証明開始)
 
(証明おわり)

(補足)
 この式は、下図の相似な三角形の辺の比が等しいことをあらわしている。下図の円は中心がAでAC=bを半径とする円である。
ここで、△BFE∽△BCGであることは以下の様に証明できる。
(証明開始)
「拡張円周角の定理と円周角の定理」の公式から、
∠BEF=∠FGC=∠BGC
が導かれ、
それゆえ、
△BEF∽△BGC
であることが分かる。
(証明おわり)

リンク:
高校数学の目次


0 件のコメント:

コメントを投稿